Scaling Turbulent Combustion Fields in Explosions

Author:

Kuhl Allen,Grote David,Bell John

Abstract

We considered the topic of explosions from spherical high-explosive (HE) charges. We studied how the turbulent combustion fields scale. On the basis of theories of dimensional analysis by Bridgman and similarity theories of Sedov and Barenblatt, we found that all fields scaled with the explosion length scale r0. This included the blast wave, the mean and root mean squared (RMS) profiles of thermodynamic variables, combustion variables, velocities, vorticity, and turbulent Reynolds stresses. This was a consequence of the formulation of the problem and our numerical method, which both satisfied the similarity conditions of Sedov. We performed numerical simulations of 1 g charges and 1 kg charges; the solutions were identical (within roundoff error) when plotted in scaled variables. We also explored scaling laws related to three-phase pyrotechnic explosions. We show that although the scaling formally broke down, the fireball still essentially scaled with the explosion length scale r0. However, the discrete Lagrange particles (DLP) (phase 2) and the heterogeneous continuum model (HCM) of the DLP wakes (phase 3) did not scale with r0, and mean and RMS profiles could differ by a factor of 10 in some regions. This was because the DLP particles and wakes introduced an additional scale that broke the similarity conditions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Dimensional Analysis;Bridgman,1922

2. On Physically Similar Systems; Illustrations of the Use of Dimensional Equations

3. Similarity and Dimensional Methods in Mechanics;Sedov,1959

4. The formation of a blast wave by a very intense explosion;Taylor;Br. Rep. RC-210,1941

5. Propagation of strong blast waves;Sedov;Prikl. Mat. Mech.,1946

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3