A User-Specific Hand Gesture Recognition Model Based on Feed-Forward Neural Networks, EMGs, and Correction of Sensor Orientation

Author:

Benalcázar Marco E.ORCID,Valdivieso Caraguay Ángel LeonardoORCID,Barona López Lorena IsabelORCID

Abstract

Hand gesture recognition systems have several applications including medicine and engineering. A gesture recognition system should identify the class, time, and duration of a gesture executed by a user. Gesture recognition systems based on electromyographies (EMGs) produce good results when the EMG sensor is placed on the same orientation for training and testing. However, when the orientation of the sensor changes between training and testing, which is very common in practice, the classification and recognition accuracies degrade significantly. In this work, we propose a system for recognizing, in real time, five gestures of the right hand. These gestures are the same ones recognized by the proprietary system of the Myo armband. The proposed system is based on the use of a shallow artificial feed-forward neural network. This network takes as input the covariances between the channels of an EMG and the result of a bag of five functions applied to each channel of an EMG. To correct the rotation of the EMG sensor, we also present an algorithm based on finding the channel of maximum energy given a set of synchronization EMGs, which for this work correspond to the gesture waveout. The classification and recognition accuracies obtained here show that the recognition system, together with the algorithm for correcting the orientation, allows a user to wear the EMG sensor in different orientations for training and testing, without a significant performance reduction. Finally, to reproduce the results obtained in this paper, we have made the code and the dataset used here publicly available.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3