Anti-Osteoarthritic Effects of Terminalia Chebula Fruit Extract (AyuFlex®) in Interleukin-1β-Induced Human Chondrocytes and in Rat Models of Monosodium Iodoacetate (MIA)-Induced Osteoarthritis

Author:

Kim Hae LimORCID,Lee Hae Jin,Lee Dong-Ryung,Choi Bong-Keun,Yang Seung HwanORCID

Abstract

Osteoarthritis (OA) is a general joint illness caused by the destruction of joint cartilage, and is common in the population of old people. Its occurrence is related to inflammatory reactions and cartilage degradation. AyuFlex® is an aqueous extract of Terminalia chebula fruit, and T. chebula has been utilized extensively in several traditional oriental medications for the management of diverse diseases. Pre-clinical and clinical research has shown its antioxidant and anti-inflammatory effectiveness. Nevertheless, the mechanism underlying the anti-arthritic effects of AyuFlex® remains unclear. In the current research, we proposed the ameliorating effects of AyuFlex® with respect to the incidence of OA and described the latent signalization in interleukin (IL)-1β-treated chondrocytes and MIA-incurred OA in a rat model. In vitro, AyuFlex® decreased oxidative stress and induction of pro-inflammatory cytokines and mediators as well as matrix metalloproteinases (MMPs), while also increasing the levels of collagen synthesis-related proteins. Mechanistically, we identified that AyuFlex® disrupted nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) activation via the inhibition of NF-κB p65 and extracellular regulated protein kinase (ERK) phosphorylation. The ameliorating effects of AyuFlex® were also observed in vivo. AyuFlex® significantly inhibited the MIA-incurred increase in OA symptoms such as oxidative stress, cartilage damage, and changes in cytokines and MMPs revelation in arthrodial cartilage. Therefore, our results suggest that AyuFlex® attenuates OA progression in vivo, indicating that AyuFlex® can be suggested as an excellent therapeutic remedy for the care of OA.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3