CIMI: Classify and Itemize Medical Image System for PFT Big Data Based on Deep Learning

Author:

Kim Tong MinORCID,Lee Seo-Joon,Lee Hwa Young,Chang Dong-Jin,Yoon Chang Ii,Choi In-Young,Yoon Kun-Ho

Abstract

The value of pulmonary function test (PFT) data is increasing due to the advent of the Coronavirus Infectious Disease 19 (COVID-19) and increased respiratory disease. However, these PFT data cannot be directly used in clinical studies, because PFT results are stored in raw image files. In this study, the classification and itemization medical image (CIMI) system generates valuable data from raw PFT images by automatically classifying various PFT results, extracting texts, and storing them in the PFT database and Excel files. The deep-learning-based optical character recognition (OCR) technology was mainly used in CIMI to classify and itemize PFT images in St. Mary’s Hospital. CIMI classified seven types and itemized 913,059 texts from 14,720 PFT image sheets, which cannot be done by humans. The number, type, and location of texts that can be extracted by PFT type are all different, but CIMI solves this issue by classifying the PFT image sheets by type, allowing researchers to analyze the data. To demonstrate the superiority of CIMI, the validation results of CIMI were compared to the results of the other four algorithms. A total of 70 randomly selected sheets (ten sheets from each type) and 33,550 texts were used for the validation. The accuracy of CIMI was 95%, which was the highest accuracy among the other four algorithms.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Respiratory health and disease in Europe: the new European Lung White Book

2. Exercise Training Reverses Extrapulmonary Impairments in Smoke-exposed Mice

3. A Review on COVID-19: Origin, Spread, Symptoms, Treatment, and Prevention;Hadi;Biointerface Res. Appl. Chem.,2020

4. The Global Impact of Respiratory Disease,2017

5. Global Status Report on Noncommunicable Diseases 2014,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semi-AI and Full-AI digitizer: The ways to digitalize visual field big data;Computer Methods and Programs in Biomedicine;2021-08

2. Big Data Research in Fighting COVID-19: Contributions and Techniques;Big Data and Cognitive Computing;2021-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3