Magnolol, A Novel Antagonist of Thrombin and PAR-1, Inhibits Thrombin-Induced Connective Tissue Growth Factor (CTGF) Expression in Vascular Smooth Muscle Cells and Ameliorate Pathogenesis of Restenosis in Rats

Author:

Ko Wen-ChinORCID,Tsai Chia-Ti,Hsu Kai-Cheng,Cheng Yu-Che,Lin Tony Eight,Chen Yi-Ling,Hong Chuang-Ye,Lu Wan-JungORCID,Shih Chun-Ming,Yen Ting-Lin

Abstract

Restenosis and destructive vascular remodeling are the main reasons for treatment failure in patients undergoing percutaneous coronary intervention (PCI). In this study, we explored the efficacy of magnolol (a traditional Chinese medicine) in the treatment of restenosis. The results of this study showed that the activities of thrombin and PAR-1 (protease-activated receptor 1) were significantly decreased by the treatment of magnolol. Based on protein docking analysis, magnolol exhibits its potential to bind to the PAR-1 active site. In addition, thrombin-induced connective tissue growth factor (CTGF) expression and the upstream of CTGF such as JNK-1 (but not JNK-2), c-Jun, and AP-1 were distinctly inhibited by magnolol (50 μM) in vascular smooth muscle cells (VSMC). For the functional assay, magnolol (50 μM) significantly inhibited the migration of VSMC, and rats treated with magnolol (13 mg/kg/day) after balloon angioplasty has observed a significant reduction in the formation of common arterial neointima. In conclusion, we identified a novel mechanism by which magnolol acts as the thrombin activity inhibitor and may be the PAR-1 antagonist. In accordance with these functions, magnolol could decrease thrombin-induced CTGF expression in VSMCs via PAR-1/JNK-1/AP-1 signaling.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3