Robotic-Based Touch Panel Test System Using Pattern Recognition Methods

Author:

Lu Chia-Chi,Juang Jih-Gau

Abstract

In this study, pattern recognition methods are applied to a five-degrees-of-freedom robot arm that can key in words on a touch screen for an automatic smartphone test. The proposed system can recognize Chinese characters and Mandarin phonetic symbols. The mechanical arm is able to perform corresponding movements and edit words on the screen. Pattern matching is based on the Red-Green-Blue (RGB) color space and is transformed to binary images for higher correct rate and geometric matching. A web camera is utilized to capture patterns on the tested smartphone screen. The proposed control scheme uses a support vector machine with a histogram of oriented gradient classifier to recognize Chinese Mandarin phonetic symbols and provide correct coordinates during the control process. The control scheme also calculates joint angles of the robot arm during the movement using the Denavit–Hartenberg parameters (D-H) model and fuzzy logic system. Fuzzy theory is applied to use the position error between the robot arm and target location then resend the command to adjust the arm’s position. From the experiments, the proposed control scheme can control the robot to press desired buttons on the tested smartphone. For Chinese Mandarin phonetic symbols, recognition accuracy of the test system can reach 90 percent.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Application of character recognition to robot control on smartphone test system

2. Real-Time Image Recognition and Path Tracking to Wheeled Mobile Robot for Taking an Elevator;Juang;Acta Polytech. Hung.,2013

3. Visual Recognition and Its Application to Robot Arm Control

4. Intelligent Manufacturing in the Context of Industry 4.0: A Review

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Robust FOPD Controller That Allows Faster Detection of Defects for Touch Panels;Mathematical and Computational Applications;2024-04-16

2. Special Issue on Advances in Robotics-Based Automation Systems;Applied Sciences;2022-12-19

3. A Systematic Mapping Study on Robotic Testing of Mobile Devices;2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA);2022-08

4. Inspection System for Vehicle Headlight Defects Based on Convolutional Neural Network;Applied Sciences;2021-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3