Abstract
Grammatical inference (GI), i.e., the task of finding a rule that lies behind given words, can be used in the analyses of amyloidogenic sequence fragments, which are essential in studies of neurodegenerative diseases. In this paper, we developed a new method that generates non-circular parsing expression grammars (PEGs) and compares it with other GI algorithms on the sequences from a real dataset. The main contribution of this paper is a genetic programming-based algorithm for the induction of parsing expression grammars from a finite sample. The induction method has been tested on a real bioinformatics dataset and its classification performance has been compared to the achievements of existing grammatical inference methods. The evaluation of the generated PEG on an amyloidogenic dataset revealed its accuracy when predicting amyloid segments. We show that the new grammatical inference algorithm achieves the best ACC (Accuracy), AUC (Area under ROC curve), and MCC (Mathew’s correlation coefficient) scores in comparison to five other automata or grammar learning methods.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference25 articles.
1. Grammatical Inference: Learning Automata and Grammars;De la Higuera,2010
2. Grammatical Inference
3. Language identification in the limit
4. Grammatical Inference;Miclet,1990
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献