Impact of the Enamel Cleaning Procedure during Debonding on Endodontium Temperature: In Vitro Tests

Author:

Machoy Monika,Szyszka-Sommerfeld Liliana,Duda PiotrORCID,Wawrzyk AnnaORCID,Woźniak Krzysztof,Wilczyński Sławomir

Abstract

Interference with live tooth tissue during dental treatment affects the temperature within the pulp. The pulp is sensitive to temperature changes, which can cause its inflammation. The aim of this study was to analyze the dynamics of pulp chamber temperature changes in response to the enamel cleaning procedure after orthodontic treatment. In the presented in vitro studies, by using a thermal imaging camera, the change in the temperature of the vestibular wall of the pulp chamber of the incisors and premolars was assessed as a function of time under the influence of polishing the enamel with the silicone rubber and aluminum oxides used during the debonding procedure after completion of orthodontic treatment with fixed appliances. The relationship between dentin density and enamel from changing the chamber temperature was evaluated by using Micro computed tomography, microtomography (micro-CT). The maximum achieved tooth surface temperature during polishing was 52.34 °C without water cooling and 43.15 °C using water cooling. The time after which a safe pulp temperature of 40 °C was obtained without water cooling was 29.4 s, while the time with water cooling was 34.6 s. The correlation between the maximum and average temperature achieved and the density of the teeth was analyzed based on micro-CT scans. No correlation between enamel or dentin density and rise in temperature was found.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Histologia: Podręcznik dla Studentów Medycyny i Stomatologii;Zabel,2000

2. Effect of composite temperature on in vitro intrapulpal temperature rise

3. Parameters Influencing Increase in Pulp Chamber Temperature with Light-curing Devices: Curing Lights and Pulpal Flow Rates

4. Pulp response to externally applied heat

5. Pulp-dentin biology in restorative dentistry. Part 6: Reactions to restorative materials, tooth-restoration interfaces, and adhesive techniques;Mjör;Quintessence Int.,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3