An Efficient Estimation of the Number of Optimal Iterations for GS Pre-coding in Downlink Massive MIMO Systems

Author:

Ro Jae-Hyun,Lee Woon-Sang,Hwang Hyun-Sun,Hwang Duckdong,You Young-Hwan,Song Hyoung-KyuORCID

Abstract

This paper proposes an estimation scheme of the number iterations for optimal Gauss–Seidel (GS) pre-coding in the downlink massive multiple input multiple output (MIMO) systems for the first time. The number of iterations in GS pre-coding is one of the key parameters and should be estimated accurately prior to signal transmission in the downlink systems. For efficient estimation without presentations of the closed-form solution for the GS pre-coding symbols, the proposed estimation scheme uses the relative method which calculates the normalized Euclidean distance (NED) between consecutive GS solutions by using the property of the monotonic decrease function of the GS solutions. Additionally, an efficient initial solution for the GS pre-coding is proposed as a two term Neumann series (NS) based on the stair matrix for improving the accuracy of estimation and accelerating the convergence rate of the GS solution. The evaluated estimation performances verify high accuracy in the downlink massive MIMO systems even in low loading factors. In addition, an additional complexity for estimating the number of the optimal iterations is nearly negligible.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Fundamentals of Massive MIMO;Marzetta,2016

2. Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency

3. Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays

4. Massive MIMO for next generation wireless systems

5. Massive MIMO two-hop relay systems over Rician fading channels;Cao;KSII Trans. Internet Inf. Syst.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Efficient Gauss-Seidel Cubature Kalman Filter;IEEE Transactions on Circuits and Systems II: Express Briefs;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3