Assessment of MOV Deterioration under Energized Conditions

Author:

Kim Sung-Wook,Kim Nam-Hoon,Kil Gyung-sukORCID

Abstract

Metal oxide varistors (MOVs) are widely used to protect electrical and electronic devices that are very vulnerable to surges due to the low insulation level of the equipment. MOVs deteriorate gradually due to manufacturing defects, mechanical and thermal stress, or repeated protective operations against surges. These defects result in the thermal runaway of MOV and finally lead to the explosion and electric fire of electrical and electronic devices due to a short circuit and a line-to-ground fault. Therefore, the reliable assessment of the condition of MOV deterioration is required for electrical and electronic equipment. However, when most accelerated degradation tests for the MOV have been performed to date, an 8/20 μs standard surge current is applied under de-energized conditions, which is unlike the actual operating environment. In this study, a surge generator was designed to apply a surge current to MOVs to monitor their deterioration. Three different types of leakage currents were measured to analyze the change rates of their electrical characteristics of MOVs by comparing them with the reference voltage variation. Furthermore, the condition assessment of MOV deterioration under energized and de-energized conditions was investigated.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference15 articles.

1. A Study on the deterioration progress of railway arresters;Kil;J. Korean Soc. Railw.,2004

2. Diagnostic techniques of lightning arresters for DC electric traction vehicles;Kil;J. Korean Soc. Railw.,2006

3. Electrical characteristic changes of ZnO varistors by energy absorption;Kim;J. Korean Inst. Electr. Electron. Mater. Eng.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3