Influence of the Thermometer Inertia on the Quality of Temperature Control in a Hot Liquid Tank Heated with Electric Energy

Author:

Taler Dawid,Sobota TomaszORCID,Jaremkiewicz Magdalena,Taler Jan

Abstract

This paper presents the medium temperature monitoring system based on digital proportional–integral–derivative (PID) control. For industrial thermometers with a complex structure used for measuring the temperature of the fluid under high pressure, the accuracy of the first-order model is inadequate. A second-order differential equation was applied to describe a dynamic response of a temperature sensor placed in a heavy thermowell (industrial thermometer). The quality of the water temperature control system in the tank was assessed when measuring the water temperature with a jacketed thermocouple and a thermometer in an industrial casing. A thermometer of a new design with a small time constant was also used to measure temperature. The quality of water temperature control in the hot water storage tank was evaluated using a classic industrial thermometer and a new design thermometer. In both cases, there was a K-type sheathed thermocouple inside the thermowell. Reductions in the time constant of the new thermometer are achieved by means of a steel casing with a small diameter hole inside which the thermocouple is precisely fitted. The time constants of the thermometers were determined experimentally with a jump in water temperature. A digital controller was designed to maintain the preset temperature in an electrically heated hot water tank. The function of the regulator was to adjust the power of the electrical heater to maintain a constant temperature of the liquid in the tank.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference28 articles.

1. Temperature Measurement;Michalski,2001

2. Practical Temperature Measurement;Childs,2001

3. Advanced Temperature Measurement and Control;McMillan,2010

4. ASME PTC 19.3 TW-2016 (Revision of ASME PTC 19.3 TW-2010),2016

5. Measurement of transient fluid temperature

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3