Author:
Liu Chengyin,Jiang Zhaoshuo,Su Xiangxiang,Benzoni Samuel,Maxwell Alec
Abstract
Human falls are the premier cause of fatal and nonfatal injuries among older adults. The health outcome of a fall event is largely dependent on rapid response and rescue of the fallen elder. Being able to provide an accurate and fast fall detection will dramatically improve the health outcomes of the older population and reduce the associated healthcare cost after a fall. To achieve the goal, a multi-features semi-supervised support vector machines (MFSS-SVM) algorithm utilizing measurements from structural floor vibration obtained through accelerometers is proposed in this study to detect falling events with limited labeled samples. In this MFSS-SVM algorithm, the peak value, energy, and correlation coefficient of the accelerometer signal are used as classification features. The performance of the proposed algorithm was validated with laboratory experiments among activities including falling, walking, free jumping, rhythmic jumping, bag dropping, and ball dropping. To further illustrate the performance of the algorithm, a benchmark database was adopted and expanded to test its ability to accurately identify falling, compared with the algorithm used in the benchmark study. Results show that by using the proposed algorithm, the falling events can be identified with high accuracy and confidence, even with small training datasets and test nodes.
Funder
Natural Science Foundation of Guangdong Province
Shenzhen Science and Technology Projects
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference47 articles.
1. The Population 65 Years and Older in the United States: 2016;Roberts,2018
2. Home Fall Detection Medical Alerthttps://www.alert-1.com
3. Saving a Life from Potential Catastrophe Every 10 Minuteshttp://www.lifealert.com/
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献