Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies

Author:

Nasrullah NasrullahORCID,Sang JunORCID,Alam Mohammad S.,Mateen Muhammad,Cai Bin,Hu Haibo

Abstract

Lung cancer is one of the major causes of cancer-related deaths due to its aggressive nature and delayed detections at advanced stages. Early detection of lung cancer is very important for the survival of an individual, and is a significant challenging problem. Generally, chest radiographs (X-ray) and computed tomography (CT) scans are used initially for the diagnosis of the malignant nodules; however, the possible existence of benign nodules leads to erroneous decisions. At early stages, the benign and the malignant nodules show very close resemblance to each other. In this paper, a novel deep learning-based model with multiple strategies is proposed for the precise diagnosis of the malignant nodules. Due to the recent achievements of deep convolutional neural networks (CNN) in image analysis, we have used two deep three-dimensional (3D) customized mixed link network (CMixNet) architectures for lung nodule detection and classification, respectively. Nodule detections were performed through faster R-CNN on efficiently-learned features from CMixNet and U-Net like encoder–decoder architecture. Classification of the nodules was performed through a gradient boosting machine (GBM) on the learned features from the designed 3D CMixNet structure. To reduce false positives and misdiagnosis results due to different types of errors, the final decision was performed in connection with physiological symptoms and clinical biomarkers. With the advent of the internet of things (IoT) and electro-medical technology, wireless body area networks (WBANs) provide continuous monitoring of patients, which helps in diagnosis of chronic diseases—especially metastatic cancers. The deep learning model for nodules’ detection and classification, combined with clinical factors, helps in the reduction of misdiagnosis and false positive (FP) results in early-stage lung cancer diagnosis. The proposed system was evaluated on LIDC-IDRI datasets in the form of sensitivity (94%) and specificity (91%), and better results were obatined compared to the existing methods.

Funder

National Natural Science Foundation of China

Chongqing Research Program of Basic Science and Frontier Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Delay in diagnosis of lung cancer in general practice;Bjerager;Br. J. Gen. Pract.,2006

2. Cancer molecular markers: A guide to cancer detection and management

3. Assessment of Plasma Proteomics Biomarker’s Ability to Distinguish Benign From Malignant Lung Nodules

4. A new method of detecting pulmonary nodules with PET/CT based on an improved watershed algorithm;Shi;PLoS ONE,2015

5. Incidental Pulmonary Nodules Detected on CT Images: Fleischner 2017;Lee;Radiology,2017

Cited by 223 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3