Modelling the Dynamics of Carbon Storages for Pinus densata Using Landsat Images in Shangri-La Considering Topographic Factors

Author:

Liao Yi,Zhang JialongORCID,Bao Rui,Xu Dongfan,Han Dongyang

Abstract

Accurate estimation of forest carbon storage is essential for understanding the dynamics of forest resources and optimizing decisions for forest resource management. In order to explore the changes in the carbon storage of Pinus densata in Shangri-La and the influence of topography on carbon storage, two dynamic models were developed based on the National Forest Inventory (NFI) and Landsat TM/OLI images with a 5-year interval change and annual average change. The three modelling methods used were partial least squares (PLSR), random forest (RF) and gradient boosting regression tree (GBRT). Various spectral and texture features of the images were calculated and filtered before modelling. The terrain niche index (TNI), which is able to reflect the combined effect of elevation and slope, was added to the dynamic model, the optimal model was selected to estimate the carbon storage, and the topographic conditions in areas of change in carbon storage were analyzed. The results showed that: (1) The dynamic model based on 5-year interval change data performs better than the dynamic model with annual average change data, and the RF model has a higher accuracy compared to the PLSR and GBRT models. (2) The addition of TNI improved the accuracy, in which R2 is improved by up to 10.48% at most, RMSE is reduced by up to 7.32% at most, and MAE is reduced by up to 8.89% at most, and the RF model based on the 5-year interval change data has the highest accuracy after adding TNI, with an R2 of 0.87, an RMSE of 3.82 t-C·ha−1, and a MAE of 1.78 t-C·ha−1. (3) The direct estimation results of the dynamic model showed that the carbon storage of Pinus densata in Shangri-La decreased in 1987–1992 and 1997–2002, and increased in 1992–1997, 2002–2007, 2007–2012, and 2012–2017. (4) The trend of increasing or decreasing carbon storage in each period is not exactly the same on the TNI gradient, according to the dominant distribution, as topographic conditions with lower elevations or gentler slopes are favorable for the accumulation of carbon storage, while the decreasing area of carbon storage is more randomly distributed topographically. This study develops a dynamic estimation model of carbon storage considering topographic factors, which provides a solution for the accurate estimation of forest carbon storage in regions with a complex topography.

Funder

National Natural Science Foundation of China

“Young Top Talents” special project of the high-level talent training support program of Yunnan province, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference70 articles.

1. Shao, W., Cai, J., Wu, H., Liu, J., Zhang, H., and Huang, H. (2017). An Assessment of Carbon Storage in China’s Arboreal Forests. Forests, 8.

2. Solomon, S.D., Qin, D., Manning, M., Chen, Z., and Miller, H.L. (2007). Working Group I Contribution to the Fourth Assessment Report of the IPCC, Cambridge University Press.

3. Luo, K. (2019). Spatial Pattern of Forest Carbon Storage in the Vertical and Horizontal Directions Based on HJ-CCD Remote Sensing Imagery. Remote Sens., 11.

4. Li, T., Li, M.-Y., and Tian, L. (2021). Dynamics of Carbon Storage and Its Drivers in Guangdong Province from 1979 to 2012. Forests, 12.

5. Estimating vegetation carbon storage based on optimal bandwidth selected from geographically weighted regression model in Shenzhen City;Long;Acta Ecol. Sin.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3