Bi-Kernel Graph Neural Network with Adaptive Propagation Mechanism for Hyperspectral Image Classification

Author:

Hu HaojieORCID,Ding YaoORCID,He FangORCID,Zhang Fenggan,Zhao Jianwei,Yao Minli

Abstract

Graph neural networks (GNNs) have been widely applied for hyperspectral image (HSI) classification, due to their impressive representation ability. It is well-known that typical GNNs and their variants work under the assumption of homophily, while most existing GNN-based HSI classification methods neglect the heterophily that is widely present in the constructed graph structure. To deal with this problem, a homophily-guided Bi-Kernel Graph Neural Network (BKGNN) is developed for HSI classification. In the proposed BKGNN, we estimate the homophily between node pairs according to a learnable homophily degree matrix, which is then applied to change the propagation mechanism by adaptively selecting two different kernels to capture homophily and heterophily information. Meanwhile, the learning process of the homophily degree matrix and the bi-kernel feature propagation process are trained jointly to enhance each other in an end-to-end fashion. Extensive experiments on three public data sets demonstrate the effectiveness of the proposed method.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference53 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3