Characteristics of Aerosol Extinction Hygroscopic Growth in the Typical Coastal City of Qingdao, China

Author:

Liu Nana,Cui ShengchengORCID,Luo TaoORCID,Chen Shunping,Yang Kaixuan,Ma Xuebin,Sun Gang,Li Xuebin

Abstract

The aerosol hygroscopic growth (HG) characteristics in coastal areas are very complex, which is one of the main influences on the simulation accuracy of radiation transfer modeling for coastal environments. Previous studies have shown that aerosol HG characteristics are very different in open oceans and inland regions. However, the aerosol HG features in coastal areas are strongly affected by its type. In this work, an aerosol backward trajectory tracing model was used to classify the local aerosol type. Using long-term field campaign data in Qingdao (25 September 2019 to 25 October 2020), the HG characteristics of different types of aerosols (i.e., land source, sea source, and mixed aerosol) under different seasons and different atmospheric environments (i.e., pollution background and clean background) were studied. Quantitative models of aerosol HG factor were established for aerosols from different sources in different seasons and under different pollution background conditions. The major type of local aerosol is terrestrial aerosol, as the marine source only accounts for 10–20%. Seasonal HG characteristics (deliquescence point, DP) of mixed and land source aerosol vary significantly, from around RH = 60% to RH = 85%, while that of the marine aerosol is rather consistent (RH = 80%). When the atmospheric background is relatively clean, the DPs of aerosols from different sources are almost the same (about RH = 80%), but when the pollution is heavy, the DPs of terrestrial aerosols are almost 20% lower than those of marine sources. These models can be directly used to characterize the hygroscopic characteristics of atmospheric aerosols in Qingdao at specific seasons or pollution levels for radiative transfer modeling, remote sensing, and so forth.

Funder

General Program of the National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Advanced Laser Technology Laboratory of Anhui Province’s Foundation

HFIPS Director’s Foundation

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference65 articles.

1. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. (2007). Climate Change 2007: The Physical Science Basis, Cambridge University Press. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

2. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (2013). Climate Change 2013: The Physical Science Basis, Cambridge University Press. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

3. Ten Years of Aerosol Effects on Single-Layer Overcast Clouds over the US Southern Great Plains and the China Loess Plateau;Yan;Adv. Meteorol.,2020

4. Modeling the Aerosol Extinction in Marine and Coastal Areas;Kaloshin;IEEE Geosci. Remote Sens. Lett.,2021

5. Absorption, Scattering and Single Scattering Albedo of Aerosols Obtained from in Situ Measurements in the Subarctic Coastal Region of Norway;Chemistry;Atmos. Chem. Phys. Discuss.,2011

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3