DSM Generation from Multi-View High-Resolution Satellite Images Based on the Photometric Mesh Refinement Method

Author:

Lv Benchao,Liu Jianchen,Wang Ping,Yasir Muhammad

Abstract

Automatic reconstruction of DSMs from satellite images is a hot issue in the field of photogrammetry. Nowadays, most state-of-the-art pipelines produce 2.5D products. In order to solve some shortcomings of traditional algorithms and expand the means of updating digital surface models, a DSM generation method based on variational mesh refinement of satellite stereo image pairs to recover 3D surfaces from coarse input is proposed. Specifically, the initial coarse mesh is constructed first and the geometric features of the generated 3D mesh model are then optimized by using the information of the original images, while the 3D mesh subdivision is constrained by combining the image’s texture information and projection information, with subdivision optimization of the mesh model finally achieved. The results of this method are compared qualitatively and quantitatively with those of the commercial software PCI and the SGM method. The experimental results show that the generated 3D digital surface has clearer edge contours, more refined planar textures, and sufficient model accuracy to match well with the actual conditions of the ground surface, proving the effectiveness of the method. The method is advantageous for conducting research on true 3D products in complex urban areas and can generate complete DSM products with the input of rough meshes, thus indicating it has some development prospects.

Funder

National Natural Science Foundation of China

Qingdao Science and Technology Demonstration and Guidance Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3