Multi-Scale Spatiotemporal Pattern Analysis and Simulation (MSPAS) Model with Driving Factors for Land Cover Change and Sustainable Development Goals: A Case Study of Nepal

Author:

Jia Wenqi,Gu Xingfa,Mi Xiaofei,Yang Jian,Zang Wenqian,Liu Peizhuo,Yan Jian,Zhu Hongbo,Zhang Xuming,Zhang Zhouwei

Abstract

In pursuit of Sustainable Development Goals (SDGs), land cover change (LCC) has been utilized to explore different dynamic processes such as farmland abandonment and urban expansion. The study proposed a multi-scale spatiotemporal pattern analysis and simulation (MSPAS) model with driving factors for SDGs. With population information from the census, multi-scale analysis criteria were designed using the combination of administrative and regional divisions, i.e., district, province, nation and ecological region. Contribution and correlation of LCC or population were quantified between multiple scales. Different kinds of driving factors were explored in the pattern analysis and then utilized for the definition of adaptive land suitability rules using the Cellular Automata-Markov (CA-Markov) simulation. As a case study of the MSPAS model, Nepal entered into a new era by the establishment of a Federal Republic in 2015. The model focused on four specific land cover classes of urban, farmland, forest and grassland to explore the pattern of Nepal’s LCC from 2016 to 2019. The result demonstrated the performance of the MSPAS model. The spatiotemporal pattern had consistency, and characteristics between multiple scales and population were related to LCC. Urban area nearly doubled while farmland decreased by 3% in these years. Urban areas expanded at the expense of farmland, especially in Kathmandu and some districts of the Terai region, which tended to occur on flat areas near the existing urban centers or along the roads. Farmland abandonment was relatively intense with scattered abandoned areas widely distributed in the Hill region under conditions of steep topography and sparse population. The MSPAS model can provide references for the development of sustainable urbanization and agriculture in SDGs.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3