Integrated UAV-Based Multi-Source Data for Predicting Maize Grain Yield Using Machine Learning Approaches

Author:

Guo YahuiORCID,Zhang Xuan,Chen ShouzhiORCID,Wang Hanxi,Jayavelu SenthilnathORCID,Cammarano Davide,Fu YongshuoORCID

Abstract

Increases in temperature have potentially influenced crop growth and reduced agricultural yields. Commonly, more fertilizers have been applied to improve grain yield. There is a need to optimize fertilizers, to reduce environmental pollution, and to increase agricultural production. Maize is the main crop in China, and its ample production is of vital importance to guarantee regional food security. In this study, the RGB and multispectral images, and maize grain yields were collected from an unmanned aerial vehicle (UAV) platform. To confirm the optimal indices, RGB-based vegetation indices and textural indices, multispectral-based vegetation indices, and crop height were independently applied to build linear regression relationships with maize grain yields. A stepwise regression model (SRM) was applied to select optimal indices. Three machine learning methods including: backpropagation network (BP), random forest (RF), and support vector machine (SVM) and the SRM were separately applied for predicting maize grain yields based on optimal indices. RF achieved the highest accuracy with a coefficient of determination of 0.963 and root mean square error of 0.489 (g/hundred-grain weight). Through the grey relation analysis, the N was the most correlated indicator, and the optimal ratio of fertilizers N/P/K was 2:1:1. Our research highlighted the integration of spectral, textural indices, and maize height for predicting maize grain yields.

Funder

National Natural Science Foundation of China

the joint fund for regional innovation and development of NSFC

the National Funds for Distinguished Young Youths

the 111 Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3