Wuhan MST Radar Observations of a Tropopause Descent Event during Heavy Rain on 1–2 June 2015

Author:

Qi HaoORCID,Chen GangORCID,Lin Yiming,Gong Wanlin,Chen Feilong,Li Yaxian,Zhou Xiaoming

Abstract

During heavy rain on 1–2 June 2015 in central China, the Wuhan mesosphere–stratosphere–troposphere (MST) radar was applied to record the atmospheric responses to the rain with a 30 min period. According to the vertical gradient of the echo power above 500 hPa, the tropopause height could be determined by MST radar detection. The tropopause descent was clearly observed by the Wuhan MST radar a few hours before the rain, and then the tropopause recovered to usual heights during the rain. The observation of the radiosonde in Wuhan was in line with that of the radar. Both the potential vorticity and the ozone mass mixing ratio variations at 100 hPa level implied the fall of the tropopause. During the tropopause decent, enhanced radar echoes appeared in the upper troposphere, the echo spectral widths became broader, and the large vertical wind velocities were recorded and indicated the occurrence of strong convective activities. The relative humidity was also found to increase at all tropospheric heights, including the region close to the tropopause. The convective flow may have transported water vapor to the tropopause heights, and a temperature decrease in this region was also recorded. It is very likely that water vapor cooling induced the tropopause descent.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3