Abstract
Satellite radar altimeters are advanced remote sensing devices that play an important role in observing the global marine environment. Accurately estimating the noise level of altimeter in-orbit ranging data is crucial for evaluating the payload performance, analyzing sea conditions, and monitoring data quality. In this study, we propose an approach based on the differential processing of along-track odd–even data sequences for altimeter in-orbit range noise-level estimation. Using the long-term along-track data sequence can notably improve the issue in the existing method in that the noise level is underestimated owing to the utilization of a relatively short data segment. On the basis of an analysis of the influence of low-frequency components on noise-level estimation, the mathematical formulas of the above differential method were deduced, and the efficacy of the approach in assessing the noise level of altimeter in-orbit data was demonstrated by simulation experiments. This method was used to estimate the noise levels of the 20 Hz datasets of Jason-3 and Sentinel-6, and the idea of the time-domain difference was extended to the frequency domain. The statistical results showed that the 20 Hz noise levels at the significant wave height (SWH) = 2 m were 7.41 cm (Jason-3 low-resolution (LR) mode), 6.66 cm (Sentinel-6 LR mode), and 3.13 cm (Sentinel-6 high-resolution (HR) mode). The power spectrum density analysis further verified its accuracy. By reprocessing the 20 Hz data of Sentinel-6 into 10, 5, and 1 Hz, the effectiveness of the along-track odd–even differential method to directly evaluate the noise level of 1 Hz data was explored, and the impact of ocean signals such as swells on noise-level estimation in synthetic aperture mode was discussed.
Funder
“WenHai” Project Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献