Influence of GEDI Acquisition and Processing Parameters on Canopy Height Estimates over Tropical Forests

Author:

Lahssini KamelORCID,Baghdadi NicolasORCID,le Maire GuerricORCID,Fayad Ibrahim

Abstract

LiDAR technology has been widely used to characterize structural parameters of forest ecosystems, which in turn are valuable information for forest monitoring. GEDI is a spaceborne LiDAR system specifically designed to measure vegetation’s vertical structure, and it has been acquiring waveforms on a global scale since April 2019. In particular, canopy height is an important descriptor of forest ecosystems, as it allows for quantifying biomass and other inventory information. This paper analyzes the accuracy of canopy height estimates from GEDI data over tropical forests in French Guiana and Gabon. The influence of various signal acquisition and processing parameters is assessed to highlight how they impact the estimation of canopy heights. Canopy height models derived from airborne LiDAR data are used as reference heights. Several linear and non-linear approaches are tested given the richness of the available GEDI information. The results show that the use of regression models built on multiple GEDI metrics allows for reaching improved accuracies compared to a direct estimation from a single GEDI height metric. In a notable way, random forest improves the canopy height estimation accuracy by almost 80% (in terms of RMSE) compared to the use of rh_95 as a direct proxy of canopy height. Additionally, convolutional neural networks calibrated on GEDI waveforms exhibit similar results to the ones of other regression models. Beam type as well as beam sensitivity, which are related to laser penetration, appear as parameters of major influence on the data derived from GEDI waveforms and used as input for canopy height estimation. Therefore, we recommend the use of only power and high-sensitivity beams when sufficient data are available. Finally, we note that regression models trained on reference data can be transferred across study sites that share identical environmental conditions.

Funder

French Space Study Center

National Research Institute for Agriculture, Food and the Environment

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3