Road Damage Detection Using the Hunger Games Search with Elman Neural Network on High-Resolution Remote Sensing Images

Author:

Al Duhayyim Mesfer,Malibari Areej A.ORCID,Alharbi Abdullah,Afef Kallekh,Yafoz AymanORCID,Alsini RaedORCID,Alghushairy OmarORCID,Mohsen HebaORCID

Abstract

Roads can be significant traffic lifelines that can be damaged by collapsed tree branches, landslide rubble, and buildings debris. Thus, road damage detection and evaluation by utilizing High-Resolution Remote Sensing Images (RSI) are highly important to maintain routes in optimal conditions and execute rescue operations. Detecting damaged road areas through high-resolution aerial images could promote faster and effectual disaster management and decision making. Several techniques for the prediction and detection of road damage caused by earthquakes are available. Recently, computer vision (CV) techniques have appeared as an optimal solution for road damage automated inspection. This article presents a new Road Damage Detection modality using the Hunger Games Search with Elman Neural Network (RDD–HGSENN) on High-Resolution RSIs. The presented RDD–HGSENN technique mainly aims to determine road damages using RSIs. In the presented RDD–HGSENN technique, the RetinaNet model was applied for damage detection on a road. In addition, the RDD–HGSENN technique can perform road damage classification using the ENN model. To tune the ENN parameters automatically, the HGS algorithm was exploited in this work. To examine the enhanced outcomes of the presented RDD–HGSENN technique, a comprehensive set of simulations were conducted. The experimental outcomes demonstrated the improved performance of the RDD–HGSENN technique with respect to recent approaches in relation to several measures.

Funder

King Khalid University

Princess Nourah bint Abdulrahman University

King Saud University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3