Experimental Study Regarding Long Range LiDAR Capabilities in Sensing Safety Distance for Vehicle Application

Author:

Popa Gabriel,Gheți Marius-Alin,Tudor EmilORCID,Vasile IonuțORCID,Sburlan Ion-Cătălin

Abstract

The safety of vehicles is one of the major goals of driving automation. The safety distance is longer for rail vehicles such as trams because of the adherence limitations of the wheel-to-rail system. The major issues of fixed frontal sensing are fake target detection, blind spots related to rail slopes, curves, and random changes in the target’s illumination or reflectivity. In this experimental study, distance measurements were performed using a scaled tram model equipped with a LiDAR sensor with a narrow field of view, under different conditions of illumination, size, and reflectivity of the target objects, and using different track configurations, to evaluate the effectiveness of such sensors in collision-avoidance systems for rail applications. The experimental findings are underlining the sensor’s sensitivity to fake targets, objects in the sensor’s blind spots, and special optical interferences, which are important for evaluating long-range LiDAR capabilities in sensing safety distance for vehicles. The conclusions can help developers to produce a dedicated colliding prevention system for trams and to identify the zones with high risk in the track where additional protection methods should be used. The LiDAR sensor must be used in conjunction with additional sensors to perform all the security tasks of an anti-colliding system for the tram.

Funder

Romanian Ministry of Education and Research, CCCDI-UEFISCDI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design a long-range near infrared LiDAR imaging system for security and surveillance applications;Journal of Optics;2024-09-14

2. Sensing Quality Driven Positioning and Orientation for LiDAR Sensors;2023 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT);2023-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3