Dual-Coupled CNN-GCN-Based Classification for Hyperspectral and LiDAR Data

Author:

Wang LeiORCID,Wang Xili

Abstract

Deep learning techniques have brought substantial performance gains to remote sensing image classification. Among them, convolutional neural networks (CNN) can extract rich spatial and spectral features from hyperspectral images in a short-range region, whereas graph convolutional networks (GCN) can model middle- and long-range spatial relations (or structural features) between samples on their graph structure. These different features make it possible to classify remote sensing images finely. In addition, hyperspectral images and light detection and ranging (LiDAR) images can provide spatial-spectral information and elevation information of targets on the Earth’s surface, respectively. These multi-source remote sensing data can further improve classification accuracy in complex scenes. This paper proposes a classification method for HS and LiDAR data based on a dual-coupled CNN-GCN structure. The model can be divided into a coupled CNN and a coupled GCN. The former employs a weight-sharing mechanism to structurally fuse and simplify the dual CNN models and extracting the spatial features from HS and LiDAR data. The latter first concatenates the HS and LiDAR data to construct a uniform graph structure. Then, the dual GCN models perform structural fusion by sharing the graph structures and weight matrices of some layers to extract their structural information, respectively. Finally, the final hybrid features are fed into a standard classifier for the pixel-level classification task under a unified feature fusion module. Extensive experiments on two real-world hyperspectral and LiDAR data demonstrate the effectiveness and superiority of the proposed method compared to other state-of-the-art baseline methods, such as two-branch CNN and context CNN. In particular, the overall accuracy (99.11%) on Trento achieves the best classification performance reported so far.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3