Improving Quality-Of-Service in LoRa Low-Power Wide-Area Networks through Optimized Radio Resource Management

Author:

Sallum EduardoORCID,Pereira NunoORCID,Alves MárioORCID,Santos MaxORCID

Abstract

Low Power Wide Area Networks (LPWAN) enable a growing number of Internet-of-Things (IoT) applications with large geographical coverage, low bit-rate, and long lifetime requirements. LoRa (Long Range) is a well-known LPWAN technology that uses a proprietary Chirp Spread Spectrum (CSS) physical layer, while the upper layers are defined by an open standard—LoRaWAN. In this paper, we propose a simple yet effective method to improve the Quality-of-Service (QoS) of LoRaWAN networks by fine-tuning specific radio parameters. Through a Mixed Integer Linear Programming (MILP) problem formulation, we find optimal settings for the Spreading Factor (SF) and Carrier Frequency (CF) radio parameters, considering the network traffic specifications as a whole, to improve the Data Extraction Rate (DER) and to reduce the packet collision rate and the energy consumption in LoRa networks. The effectiveness of the optimization procedure is demonstrated by simulations, using LoRaSim for different network scales. In relation to the traditional LoRa radio parameter assignment policies, our solution leads to an average increase of 6% in DER, and a number of collisions 13 times smaller. In comparison to networks with dynamic radio parameter assignment policies, there is an increase of 5%, 2.8%, and 2% of DER, and a number of collisions 11, 7.8 and 2.5 times smaller than equal-distribution, Tiurlikova’s (SOTA), and random distribution, respectively. Regarding the network energy consumption metric, the proposed optimization obtained an average consumption similar to Tiurlikova’s, and 2.8 times lower than the equal-distribution and random dynamic allocation policies. Furthermore, we approach the practical aspects of how to implement and integrate the optimization mechanism proposed in LoRa, guaranteeing backward compatibility with the standard protocol.

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Reference49 articles.

1. LoRaWAN 1.1 Specification;Committee;LoRa Alliance Stand,2017

2. Sigfox, the World’s Leading IoT Services Provider https://www.sigfox.com/en

3. What Is Weightless—Weightless http://www.weightless.org/about/what-is-weightless

4. WAVIoT LPWAN—Low-Power LONG-Range (LPWAN) Solutions for IoT and M2M https://waviot.com/

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3