Achieving Tunable Mechanoluminescence in CaZnOS:Tb3+, Sm3+ for Multicolor Stress Sensing

Author:

Wang Wenqi12ORCID,Li Zihui12,Wang Ziying12,Xiang Zhizhi12,Wang Zhenbin12,Li Sixia12,Zhang Mingjin12,Liu Weisheng123

Affiliation:

1. School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China

2. Qinghai Key Laboratory of Advanced Technology and Application of Environmental Functional Materials, Xining 810016, China

3. Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

Abstract

Mechanoluminescent (ML) materials can exhibit visible-to-near-infrared mechanoluminescence when responding to the fracture or deformation of a solid under mechanical stimulation. Transforming mechanical energy into light demonstrates promising applications in terms of visual mechanical sensing. In this work, we synthesized the phosphor CaZnOS:Tb3+, Sm3+, which exhibited intense and tunable multicolor mechanoluminescence without pre-irradiation. Intense green ML materials were obtained by doping Tb3+ with different concentrations. Tunable multicolor mechanoluminescence (such as green, yellow-green, and orange-red) could be realized by combining green emission (about 542 nm), attributed to Tb3+, and red emission (about 600 nm) generated from the Sm3+ in the CaZnOS substrate. The tunable multicolor ML materials CaZnOS:Tb3+, Sm3+ exhibited intense luminance and recoverable mechanoluminescence when responding to mechanical stimulation. Benefiting from the excellent ML performance and multicolor tunability in CaZnOS:Tb3+, Sm3+, we mixed the phosphor with PDMS and a curing agent to explore its practical application. An application for visual mechanical sensing was designed for handwriting identification. By taking a time-lapsed shot while writing, we easily obtained images of the writer’s handwriting. The images of the ML intensity were acquired by using specific software to transform the shooting data. We could easily distinguish people’s handwriting through analyzing the different ML performances.

Funder

Project of Youth Foundation of Qinghai Provincial Science and Technology Department

Young and MiddleAged Research Foundation of Qinghai Normal University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3