Highly Efficient Peroxymonosulfate Electroactivation on Co(OH)2 Nanoarray Electrode for Pefloxacin Degradation

Author:

Bao Tonghui1,Ke Hui1,Li Wanjiang1,Cai Linke1,Huang Yi1ORCID

Affiliation:

1. Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China

Abstract

The activation of PMS to produce active species is an attractive technique for antibiotic degradation but is restricted to the low reaction kinetics and high costs. In this work, a cobalt-based catalyst was prepared by in situ electrodeposition to enhance the electrically activated PMS process for the degradation of antibiotics. Almost 100% of pefloxacin (PFX) was removed within 10 min by employing Co(OH)2 as the catalyst in the electrically activated peroxymonosulfate (PMS) process, and the reaction kinetic constant reached 0.52 min−1. The redox processes of Co2+ and Co3+ in Co(OH)2 catalysts were considered to be the main pathways for PMS activation, in which 1O2 was the main active species. Furthermore, this strategy could also achieve excellent degradation efficiency for other organic pollutants. This study provides an effective and low-cost strategy with no secondary pollution for pollutant degradation.

Funder

National Natural Science Foundation of China

Hubei Province Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3