High Magnetic Performance in MnGa Nanocomposite Magnets

Author:

Crisan Ovidiu1,Crisan Alina Daniela1

Affiliation:

1. National Institute for Materials Physics, P.O. Box MG-7, 077125 Magurele, Romania

Abstract

In view of their potential applicability in technology fields where magnets are required to operate at higher temperatures, the class of nanocomposite magnets with little or no rare earth (RE) content has been widely researched in the last two decades. Among these nanocomposite magnets, the subclass of magnetic binary systems exhibiting the formation of L10 tetragonal phases is the most illustrious. Some of the most interesting systems are represented by the Mn-based alloys, with addition of Al, Bi, Ga, Ge. Such alloys are interesting as they are less costly than RE magnets and they show promising magnetic properties. The paper tackles the case of MnGa binary alloys with various compositions around the Mn3Ga stoichiometry. Four MnGa magnetic alloys, with Mn content ranging from 70 at% to 75 at% were produced using rapid solidification to form the melt. By combining structural information arising from X-ray diffractometry and transmission electron microscopy with magnetic properties determined by vibrating sample magnetometry, we are able to document the nature and properties of the structural phases formed in the alloys in their as-cast state and upon annealing, the evolution of the phase structure after annealing and its influence on the magnetic behavior of the MnGa alloys. After annealing at 400 °C and 500 °C, MnGa alloys are showing a multiple-phase microstructure, consisting of co-existing crystallites of L10 and D022 tetragonal phase. As a consequence of these structurally and magnetically different phases, co-existing within the microstructure, promising magnetic features are obtained, with both coercive fields and saturation magnetization exceeding values previously reported for both alloys and layers of MnGa.

Funder

Romanian Ministry of Research, Innovation and Digitalization

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3