Study on the Luminescence Performance and Anti-Counterfeiting Application of Eu2+, Nd3+ Co-Doped SrAl2O4 Phosphor

Author:

Wang Zhanpeng1,Liu Quanxiao1,Wang Jigang1ORCID,Qi Yuansheng1,Li Zhenjun23ORCID,Li Junming4ORCID,Zhang Zhanwei5,Wang Xinfeng5,Li Cuijuan5,Wang Rong5

Affiliation:

1. Beijing Key Laboratory of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China

2. National Center for Nanoscience and Technology, CAS Key Laboratory of Nanophotonic Materials and Devices (Preparatory), Beijing 100190, China

3. The GBA Research Innovation Institute for Nanotechnology, Guangzhou 510700, China

4. Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing 100192, China

5. Yunnan Jiake Packaging Technology Co., Ltd., Yuxi 653100, China

Abstract

This manuscript describes the synthesis of green long afterglow nanophosphors SrAl2O4:Eu2+, Nd3+ using the combustion process. The study encompassed the photoluminescence behavior, elemental composition, chemical valence, morphology, and phase purity of SrAl2O4:Eu2+, Nd3+ nanoparticles. The results demonstrate that after introducing Eu2+ into the matrix lattice, it exhibits an emission band centered at 508 nm when excited by 365 nm ultraviolet light, which is induced by the 4f65d1→4f7 transition of Eu2+ ions. The optimal doping concentrations of Eu2+ and Nd3+ were determined to be 2% and 1%, respectively. Based on X-ray diffraction (XRD) analysis, we have found that the physical phase was not altered by the doping of Eu2+ and Nd3+. Then, we analyzed and compared the quantum yield, fluorescence lifetime, and afterglow decay time of the samples; the co-doped ion Nd3+ itself does not emit light, but it can serve as an electron trap center to collect a portion of the electrons produced by the excitation of Eu2+, which gradually returns to the ground state after the excitation stops, generating an afterglow luminescence of about 15 s. The quantum yields of SrAl2O4:Eu2+ and SrAl2O4:Eu2+, Nd3+ phosphors were 41.59% and 10.10% and the fluorescence lifetimes were 404 ns and 76 ns, respectively. In addition, the Eg value of 4.98 eV was determined based on the diffuse reflectance spectra of the material, which closely matches the calculated bandgap value of SrAl2O4. The material can be combined with polyacrylic acid to create optical anti-counterfeiting ink, and the butterfly and ladybug patterns were effectively printed through screen printing; this demonstrates the potential use of phosphor in the realm of anti-counterfeiting printing.

Funder

National Key R&D Program of China

National key research and development program

Beijing Natural Science Foundation

General Project of Beijing Municipal Education Commission Science and Technology Program

National Natural Science Foundation of China

general project of fundamental research of BIGC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3