Large-Area Perovskite Solar Module Produced by Introducing Self-Assembled L-Histidine Monolayer at TiO2 and Perovskite Interface

Author:

Hsu Hung-Chieh12,Tsao Jung-Che12,Yeh Cheng-Hsien13ORCID,Wu Hsuan-Ta4ORCID,Wu Chien-Te5,Wu Shih-Hsiung2,Shih Chuan-Feng126ORCID

Affiliation:

1. Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan

2. Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Tainan 711010, Taiwan

3. Applied High Entropy Technology (AHET) Center, National Cheng Kung University, Tainan 70101, Taiwan

4. Department and Institute of Electrical Engineering, Minghsin University of Science and Technology, Hsinchu 30401, Taiwan

5. Symbio, Inc., New Taipei City 241457, Taiwan

6. Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan

Abstract

Perovskite solar cells have been proven to enhance cell characteristics by introducing passivation materials that suppress defect formation. Defect states between the electron transport layer and the absorption layer reduce electron extraction and carrier transport capabilities, leading to a significant decline in device performance and stability, as well as an increased probability of non-radiative recombination. This study proposes the use of an amino acid (L-Histidine) self-assembled monolayer material between the transport layer and the perovskite absorption layer. Surface analysis revealed that the introduction of L-Histidine improved both the uniformity and roughness of the perovskite film surface. X-ray photoelectron spectroscopic analysis showed a reduction in oxygen vacancies in the lattice and an increase in Ti4+, indicating that L-Histidine successfully passivated trap states at the perovskite and TiO2 electron transport layer interface. In terms of device performance, the introduction of L-Histidine significantly improved the fill factor (FF) because the reduction in interface defects could suppress charge accumulation and reduce device hysteresis. The FF of large-area solar modules (25 cm2) with L-Histidine increased from 55% to 73%, and the power conversion efficiency (PCE) reached 16.5%. After 500 h of aging tests, the PCE still maintained 91% of its original efficiency. This study demonstrates the significant impact of L-Histidine on transport properties and showcases its potential for application in the development of large-area perovskite module processes.

Publisher

MDPI AG

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3