Nanotechnological Antibacterial and Conductive Wound Dressings for Pressure Ulcer Prevention

Author:

Pollini Mauro1ORCID,Striani Raffaella2,Paladini Federica1ORCID,Kiani Aida3ORCID,Acocella Maria Rosaria3ORCID,Esposito Corcione Carola2ORCID

Affiliation:

1. Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy

2. Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy

3. Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy

Abstract

The development of pressure ulcers, associated with increased temperature and moisture in specific areas of the body, and the risk of microbial infections in patients lying in a static position for prolonged periods of time represents a serious issue in medicine. In order to prevent the formation of pressure ulcers, this work aims to present advanced nanostructured coatings developed by three research groups. Nanometric silver, ash and functionalized torrefied biomass were the basis for the treatment of wound dressings to improve thermal conductivity and antimicrobial properties of the conventional cotton gauzes. Each treatment was performed according to its own optimized method. The treated fabrics were characterized in terms of antimicrobial properties, heat transfer, morphology and hydrophobic behavior. The results demonstrated the effectiveness of the deposition treatments also in synergistic actions. In particular, the antibacterial efficacy was improved in all the samples by the addition of silver treatment, and the thermal conductivity was enhanced by around 58% with nanometric ashes. A further step of the study involved the designing of two multilayer systems evaluated using circuit models for determining the total thermal conductivity. In this way, both systems were designed with the aim to guarantee simultaneous efficacy: high antibacterial and hydrophilic properties at the skin level and more hydrophobic and conductive behaviors toward the external environment.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3