Precise Measurement and Compensation of the Micro Product of Inertia for Float Assembly in Pendulous Integrating Gyroscopic Accelerometers

Author:

Zhou Xiaojun12,Yang Gongliu1,Niu Wentao2,Tu Yongqiang1ORCID

Affiliation:

1. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China

2. Beijing Institute of Aerospace Control Devices, Beijing 100039, China

Abstract

Nonlinear error has become the most critical factor restricting the measurement accuracy of pendulous integrating gyroscopic accelerometers (PIGA) during their improvement. The key to nonlinear error suppression for PIGA is the precise measurement and compensation of the micro product of inertia (MPOI) of the float assembly. However, the existing equipment and procedure for product of inertia (POI) measurement and compensation do not meet the accuracy requirements for MPOI. To solve this problem, novel equipment and procedures are proposed for the measurement and compensation of MPOI. The principle of the proposed measurement method is to simulate the error produced by MPOI in PIGA by using a single-axis turntable to rotate the float assembly along the eccentric axis to generate a centrifugal moment due to MPOI. The principle of the proposed compensation method is to remove the asymmetric mass to reduce the MPOI to zero. Through experimental validation, it is concluded that: (1) the measurement and compensation accuracy of the proposed method are better than 1 × 10−10 kg·m2 and 3 × 10−10 kg·m2, respectively; (2) the proposed method is validated as the MPOI is reduced from 7.3 × 10−9 kg·m2 to 3 × 10−10 kg·m2 for a real float assembly in PIGA, and the quadratic error of PIGA is reduced from 10−5/g0 to 3 × 10−7/g0.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3