Multiscale Cumulative Residual Dispersion Entropy with Applications to Cardiovascular Signals

Author:

Kim Youngjun1,Choi Young-Seok1ORCID

Affiliation:

1. Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, Republic of Korea

Abstract

Heart rate variability (HRV) is used as an index reflecting the adaptability of the autonomic nervous system to external stimuli and can be used to detect various heart diseases. Since HRVs are the time series signal with nonlinear property, entropy has been an attractive analysis method. Among the various entropy methods, dispersion entropy (DE) has been preferred due to its ability to quantify the time series’ underlying complexity with low computational cost. However, the order between patterns is not considered in the probability distribution of dispersion patterns for computing the DE value. Here, a multiscale cumulative residual dispersion entropy (MCRDE), which employs a cumulative residual entropy and DE estimation in multiple temporal scales, is presented. Thus, a generalized and fast estimation of complexity in temporal structures is inherited in the proposed MCRDE. To verify the performance of the proposed MCRDE, the complexity of inter-beat interval obtained from ECG signals of congestive heart failure (CHF), atrial fibrillation (AF), and the healthy group was compared. The experimental results show that MCRDE is more capable of quantifying physiological conditions than preceding multiscale entropy methods in that MCRDE achieves more statistically significant cases in terms of p-value from the Mann–Whitney test.

Funder

Korea government

Research Grant of Kwangwoon University

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3