The Influence of Dietary Synbiotic on Agonistic Behavior, Stress, and Brain Monoamines via Modulation of the Microbiota–Gut–Brain Axis in Laying Hens

Author:

Johnson Alexa M.1,Clark Alexis1,Anderson Mallory G.1ORCID,Corbin Elyse2,Arguelles-Ramos Mireille1ORCID,Ali Ahmed B. A.13ORCID

Affiliation:

1. Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA

2. Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA

3. Animal Behavior and Management, Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt

Abstract

A complex system of neural pathways, collectively known as the microbiota–gut–brain (MGB) axis, interconnects the gut microbiota, the gastrointestinal system, and the brain along with its periphery. Previous studies have demonstrated that modulation of the MGB axis can influence stress-related behaviors such as anxiety. This connection becomes apparent in scenarios like agonistic behavior in laying hens, which is characterized by aggressive head and feather pecks, that can ultimately result in cannibalism and death. The objective was to examine the effects of a dietary synbiotic on agonistic behavior, plasma and brain monoamines, stress parameters, and cecal microbiota counts via modulation of the MGB axis. A total of 396 W36 Hy-Line laying hens were provided at random with a control (CON: basal diet) or treatment (SYN: basal diet supplemented with synbiotic) diet from 50 to 60 weeks old (nine pens/treatment, 22 birds/pen). Blood samples and video recordings (three consecutive days/week) were taken at 50 and 60 weeks. At 60 weeks, three hens/pen were euthanized for brain and cecal microbiota collection. Threatening, fighting, head, body, and feather pecking all occurred less frequently at 60 weeks in the SYN group (p < 0.05). Plasma corticosterone, adrenocorticotropic hormone, dopamine, and serotonin were significantly lower while tryptophan and 5-hydroxyindoleacetic acid were significantly higher in birds from the SYN group (p < 0.05). Significant differences in serotonin, 5-hydroxyindoleacetic acid, dopamine, homovanillic acid, and 3,4-dihydroxyphenylacetic acid were observed in the hypothalamus, hippocampus, and amygdala of the brain. Serotonin and dopamine turnover rates were significantly different in all three regions of the brain (p < 0.05). Cecal counts of Lactobacillus and Bifidobacterium were significantly higher in the SYN group (p < 0.05). Synbiotic supplementation resulted in many significant differences, indicating activation of the serotonergic systems and modulation of both the MGB axis and HPA axis with positive effects on welfare and stress.

Funder

United Sorghum Checkoff Program

Clemson University Experiment Station

NIFA/USDA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3