Assessment of Genetic Stability on In Vitro Propagation of Ardisia crenata var. bicolor Using ISSR Markers

Author:

Ai Xingmei1,Wen Yonghui1,Wang Bin2

Affiliation:

1. Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China

2. Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China

Abstract

Ardisia crenata var. bicolor is a multi-purpose plant and has important ornamental and medicinal properties. Conventional methods of propagating the species from seeds and cuttings have low efficiency because of the recalcitrant properties of seeds and low survival rate of high-quality cuttings. This work aims to study the in vitro regeneration protocol for direct organogenesis from nodal segments of A. crenata var. bicolor on Murashige and Skoog (MS) medium, with different combinations and concentrations of plant growth regulators (PGRs). The treatments used for the establishment and proliferation of shoots included MS medium supplemented with different concentrations of Benzyl-aminopurine (BAP) and indole-3-butyric acid (IBA). For rooting, IBA was used in combination with naphthaleneacetic acid (NAA) in full- and half-strength MS media. Maximum shoot establishment (76.67%) and the highest shoot length (6.6 cm) were observed on MS medium with 1.0 mg·L−1 BAP with 0.5 mg·L−1 IBA, while BAP at 1.0 mg·L−1 with 0.25 mg·L−1 IBA obtained the highest shoot proliferation (4.5 ± 1.53). The best rooting response (83.33%) was achieved on half-strength MS including 1.0 mg·L−1 IBA with 0.25 mg·L−1 NAA, and the maximum survival rate of 84.4% was observed after acclimatization under 75% shading. To define their genetic stability, using eleven primers of ISSR markers to assess the genetic stability of the unstable leaf color samples compared with their mother plant, the ISSR markers demonstrated a level of genetic polymorphism in plantlets, but without other morphological variations. This indicates the genetic resemblance to the mother plant and the reliability of this protocol for the efficient micropropagation of A. crenata var. bicolor.

Funder

Southwest Forestry University

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3