The Na+/H+ Exchanger NHX1 Controls H+ Accumulation in the Vacuole to Influence Sepal Color in Hydrangea macrophylla

Author:

Zhang Gaitian1,Yuan Suxia1,Qi Hui1,Chu Zhiyun1,Liu Chun1

Affiliation:

1. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

Hydrangea macrophylla is popular for its unique physiological characteristics and changeable colors. Previous studies have shown that the pH of the vacuoles of the sepal cells of hydrangea affects the color of the sepals. Located on the vacuolar membrane, NHX1 is an important H+ proton pump that drives the exchange of metal ions. This proton pump affects the physiological environment by controlling the accumulation of H+ in the vacuole. In hydrangea, the HmNHX1 gene has an open reading frame of 1626 bp and encodes a total of 541 amino acids. Bioinformatic analysis showed that HmNHX1, which encodes a Na+/H+ exchanger, is located on the vacuolar membrane. Tissue-specific expression analysis showed that the expression of this gene in the treatment group was higher than that in the control group. The ion flux in the vacuoles of colored hydrangea in the treatment group and the control group were measured, and the results showed that HmNHX1 was indeed a Na+/H+ exchanger. When the results of the HmNHX1 expression analysis and ion flux measurements are combined, it can be seen that HmNHX1 regulates the accumulation of H+ in the vacuole, ultimately affecting the color of the plant.

Funder

Central Public Interest Scientific Institution Basal Research Fund

Science and Technology Innovation Program of the Chinese Academy of Agricultural Science

Publisher

MDPI AG

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3