Influence of Abiotic Stresses on Morphophysiological Characteristics and Biological Value of Grain Sorghum bicolor (L.) Moench

Author:

Kibalnik Oksana Pavlovna,Sazonova Irina Alexandrovna,Bochkareva Yulia Valerievna,Bychkova Vera Valerievna,Semin Dmitry Sergeevich

Abstract

Sorghum is the agricultural crop most adaptable to the effects of abiotic factors, able to tolerate prolonged soil and air droughts, changes in air temperature, insufficient precipitation, salinization, acidification of soils, and many others with the least loss of yield compared to traditional crops such as wheat and barley. However, even among sorghum genotypes, there are samples with varying degrees of resistance to stressors, for example, drought. The aim of this study is a comprehensive study of the influence of abiotic factors on the physiological characteristics and biochemical parameters of sorghum grain. The experiment was carried out on the experimental field and laboratory conditions of the Rossorgo Institute. Drought resistance of plants is determined in the initial phase of development and during the flowering period by the degree of seed swelling in hypertonic solutions and the water regime of the leaves (total water content, water deficiency, moisture loss, and water-holding capacity). The quality of the grain is determined using the spectrophotometry method for the main biochemical components, and likewise, the separation of the protein into fractions. The growing conditions of plants in 2021–2022 differ significantly in terms of hydrothermal indicators. As a result of the conducted research for use in breeding programs for the creation of new varieties and hybrids with increased stress resistance selected samples L-65/14, Magistr has high drought resistance in the degree of seed swelling in hypertonic solutions (55.2–58.9%), which turned out to be at the level of the control variant (61.6–63.7%), and indicators of the water regime of the leaves (total water content of leaf tissues—74.20–77.83%; water-retaining capacity—83.77–85.56%; low moisture loss for 1 h/day—2.86–3.01%). These samples were characterized by the biological value determined by the optimal ratio of major indicators of grain and protein fractions: albumin (16.59–22.75%), globulin (8.13–9.09%), glutelin (9.09–14.01%), and prolamin (5.79–11.50%).

Funder

Ministry of Agriculture of the Russian Federation

Publisher

MDPI AG

Subject

Plant Science

Reference41 articles.

1. Physiological mechanisms of drought tolerance in sorghum, genetic basis and breeding methods: A review;Amelework;Afr. J. Agric. Res.,2015

2. Effect of water stress on yield and water use efficiency of sorghum (Sorghum bicolor L. Moench) in Semi-Arid Environment;Jabereldar;Int. J. Agric. For.,2017

3. Assesment of drought resistance in sorghum CMS lines based on various sterility sources;Kibalnik;Proceed. Appl. Bot. Gen. Breed.,2021

4. Sweet sorghum: Characteristics and potential;Reddy;Int. Sorghum Millets Newsl.,2003

5. Physiological potential of sorghum seeds under discontinuous hydration and water deficiency conditions;Sarmento;RCA,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3