Optimizing Encapsulation: Comparative Analysis of Spray-Drying and Freeze-Drying for Sustainable Recovery of Bioactive Compounds from Citrus x paradisi L. Peels

Author:

Stabrauskiene Jolita12ORCID,Pudziuvelyte Lauryna12,Bernatoniene Jurga12ORCID

Affiliation:

1. Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania

2. Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania

Abstract

Spray-drying and freeze-drying are indispensable techniques for microencapsulating biologically active compounds, crucial for enhancing their bioavailability and stability while protecting them from environmental degradation. This study evaluates the effectiveness of these methods in encapsulating Citrus x paradisi L. (grapefruit) peel extract, focusing on sustainable recovery from waste peels. Key objectives included identifying optimal wall materials and assessing each encapsulation technique’s impact on microencapsulation. The investigation highlighted that the choice of wall material composition significantly affects the microencapsulation’s efficiency and morphological characteristics. A wall material mixture of 17 g maltodextrin, 0.5 g carboxymethylcellulose, and 2.5 g β-cyclodextrin was optimal for spray drying. This combination resulted in a sample with a wettability time of 1170 (s), a high encapsulation efficiency of 91.41%, a solubility of 60.21%, and a low moisture content of 5.1 ± 0.255%. These properties indicate that spray-drying, particularly with this specific wall material composition, offers a durable structure and can be conducive to prolonged release. Conversely, varying the precise compositions used in the freeze-drying process yielded different results: quick wettability at 132.6 (s), a solubility profile of 61.58%, a moisture content of 5.07%, and a high encapsulation efficiency of 78.38%. The use of the lyophilization technique with this latter wall material formula resulted in a more porous structure, which may facilitate a more immediate release of encapsulated compounds and lower encapsulation efficiency.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3