Identifying and Characterizing Conveyor Belt Longitudinal Rip by 3D Point Cloud Processing

Author:

Xu ShichangORCID,Cheng Gang,Pang YusongORCID,Jin ZujinORCID,Kang Bin

Abstract

Real-time and accurate longitudinal rip detection of a conveyor belt is crucial for the safety and efficiency of an industrial haulage system. However, the existing longitudinal detection methods possess drawbacks, often resulting in false alarms caused by tiny scratches on the belt surface. A method of identifying the longitudinal rip through three-dimensional (3D) point cloud processing is proposed to solve this issue. Specifically, the spatial point data of the belt surface are acquired by a binocular line laser stereo vision camera. Within these data, the suspected points induced by the rips and scratches were extracted. Subsequently, a clustering and discrimination mechanism was employed to distinguish the rips and scratches, and only the rip information was used as alarm criterion. Finally, the direction and maximum width of the rip can be effectively characterized in 3D space using the principal component analysis (PCA) method. This method was tested in practical experiments, and the experimental results indicate that this method can identify the longitudinal rip accurately in real time and simultaneously characterize it. Thus, applying this method can provide a more effective and appropriate solution to the identification scenes of longitudinal rip and other similar defects.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3