Research on the Flow Characteristics and Reaction Mechanisms of Lateral Flow Immunoassay under Non-Uniform Flow

Author:

Zhao Xuyan1,Zhang Yuan1,Niu Qunfeng2,Wang Li2,Xing Chenglong2,Wang Qiao2ORCID,Bao Hui1

Affiliation:

1. College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China

2. College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China

Abstract

Lateral flow immunoassay (LFIA) is extensively utilized for point-of-care testing due to its ease of operation, cost-effectiveness, and swift results. This study investigates the flow dynamics and reaction mechanisms in LFIA by developing a three-dimensional model using the Richards equation and porous media transport, and employing numerical simulations through the finite element method. The study delves into the transport and diffusion behaviors of each reaction component in both sandwich LFIA and competitive LFIA under non-uniform flow conditions. Additionally, the impact of various parameters (such as reporter particle concentration, initial capture probe concentrations for the T-line and C-line, and reaction rate constants) on LFIA performance is analyzed. The findings reveal that, in sandwich LFIA, optimizing parameters like increasing reporter particle concentration and initial capture probe concentration for the T-line, as well as adjusting reaction rate constants, can effectively enhance detection sensitivity and broaden the working range. Conversely, in competitive LFIA, the effects are inverse. This model offers valuable insights for the design and enhancement of LFIA assays.

Funder

Innovative Funds Plan of Henan University of Technology

Henan Science and Technology Research Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3