Measuring Wind Speed Using the Internal Stabilization System of a Quadrotor Drone

Author:

Simma Magdalena,Mjøen HåvardORCID,Boström Tobias

Abstract

This article proposes a method of measuring wind speed using the data logged by the autopilot of a quadrotor drone. Theoretical equations from works on quadrotor control are utilized and supplemented to form the theoretical framework. Static thrust tests provide the necessary parameters for calculating wind estimates. Flight tests were conducted at a test site with laminar wind conditions with the quadrotor hovering next to a static 2D ultrasonic anemometer with wind speeds between 0–5 m/s. Horizontal wind estimates achieve exceptionally good results with root mean square error (RMSE) values between 0.26–0.29 m/s for wind speed, as well as between 4.1–4.9 for wind direction. The flexibility of this new method simplifies the process, decreases the cost, and adds new application areas for wind measurements.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of Nonlinear Filters for Quadcopter Wind Estimation;AIAA SCITECH 2024 Forum;2024-01-04

2. Improving the prediction of wind speed and power production of SCADA system with ensemble method and 10-fold cross-validation;Case Studies in Chemical and Environmental Engineering;2023-12

3. Dynamic Numerical Studies of a Rotorcraft Entering and Exiting Rectangular Tunnel;2023 IEEE International Conference on e-Business Engineering (ICEBE);2023-11-04

4. Anemoi: A Low-cost Sensorless Indoor Drone System for Automatic Mapping of 3D Airflow Fields;Proceedings of the 29th Annual International Conference on Mobile Computing and Networking;2023-10-02

5. Flight Experiments and Numerical Simulations for Investigating Multicopter Flow Field and Structure Deformation;Atmosphere;2023-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3