Input-Output Budgets of Nutrients in Adjacent Norway Spruce and European Beech Monocultures Recovering from Acidification

Author:

Růžek MichalORCID,Myška Oldřich,Kučera Jiří,Oulehle Filip

Abstract

Soil acidification has constituted an important ecological threat to forests in Central Europe since the 1950s. In areas that are sensitive to acid pollution, where the soil buffering capacity is naturally low, tree species can significantly modulate the extent of soil acidification by affecting throughfall deposition and the composition of litter. A principal difference can be expected between coniferous and broadleaf tree species. The aim of our study was to compare long-term trends in element cycling in two stands representing the main types of forest ecosystem in the region (Picea abies vs. Fagus sylvatica). In the period of 2005–2017, we continually measured element concentrations and fluxes in bulk precipitation, throughfall precipitation, and soil leachates. A continuous decline of acid deposition was detected in both bulk precipitation and throughfall. Declining deposition of S and N in both forests has led to the recovery of soil solution chemistry in the mineral soil, manifested by rising pH from 4.25 to 4.47 under spruce and from 4.42 to 4.69 in the beech stand. However, soil water in the spruce stand was more acidic, with higher concentrations of SO42− and Al when compared to the beech stand. While the acidity of soil leachates from organic horizons was driven mainly by organic anions, in lower mineral horizons it was controlled by inorganic acid anions. NO3− concentrations in deeper horizons of the spruce stand have diminished since 2006; however, in the beech plot, episodically elevated NO3− concentrations in mineral horizons are a sign of seasonal processes and of nearby perturbations. Higher output of S when compared to the input of the same element indicates slow S resorption, delaying the recovery of soil chemistry. Our results indicate that, although forest ecosystems are recovering from acidification, soil S retention and the ability to immobilize N is affected by the dominant tree species.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3