Abstract
Internet of Things Operating Systems (IoT OSs) run, manage and control IoT devices. Therefore, it is important to secure the source code for IoT OSs, especially if they are deployed on devices used for human care and safety. In this paper, we report the results of our investigations of the security status and the presence of security vulnerabilities in the source code of the most popular open source IoT OSs. Through this research, three Static Analysis Tools (Cppcheck, Flawfinder and RATS) were used to examine the code of sixteen different releases of four different C/C++ IoT OSs, with 48 examinations, regarding the presence of vulnerabilities from the Common Weakness Enumeration (CWE). The examination reveals that IoT OS code still suffers from errors that lead to security vulnerabilities and increase the opportunity of security breaches. The total number of errors in IoT OSs is increasing from version to the next, while error density, i.e., errors per 1K of physical Source Lines of Code (SLOC) is decreasing chronologically for all IoT Oss, with few exceptions. The most prevalent vulnerabilities in IoT OS source code were CWE-561, CWE-398 and CWE-563 according to Cppcheck, (CWE-119!/CWE-120), CWE-120 and CWE-126 according to Flawfinder, and CWE-119, CWE-120 and CWE-134 according to RATS. Additionally, the CodeScene tool was used to investigate the development of the evolutionary properties of IoT OSs and the relationship between them and the presence of IoT OS vulnerabilities. CodeScene reveals strong positive correlation between the total number of security errors within IoT OSs and SLOC, as well as strong negative correlation between the total number of security errors and Code Health. CodeScene also indicates strong positive correlation between security error density (errors per 1K SLOC) and the presence of hotspots (frequency of code changes and code complexity), as well as strong negative correlation between security error density and the Qualitative Team Experience, which is a measure of the experience of the IoT OS developers.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference49 articles.
1. A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security
2. “IoT Market,” Forbes Media LLChttps://www.forbes.com/sites/louiscolumbus/2018/08/16/iot-market-predicted-to-double-by-2021-reaching-520b/#3ecc8fc11f94
3. Microsoft Azure IoThttps://azure.microsoft.com
4. Amazon IoThttps://aws.amazon.com/iot/
5. Cisco Jasper Controlwww.jasper.com
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献