Balancing Heterogeneous Image Quality for Improved Cross-Spectral Face Recognition

Author:

Cao ZhichengORCID,Cen XiORCID,Zhao HengORCID,Pang LiaojunORCID

Abstract

Matching infrared (IR) facial probes against a gallery of visible light faces remains a challenge, especially when combined with cross-distance due to deteriorated quality of the IR data. In this paper, we study the scenario where visible light faces are acquired at a short standoff, while IR faces are long-range data. To address the issue of quality imbalance between the heterogeneous imagery, we propose to compensate it by upgrading the lower-quality IR faces. Specifically, this is realized through cascaded face enhancement that combines an existing denoising algorithm (BM3D) with a new deep-learning-based deblurring model we propose (named SVDFace). Different IR bands, short-wave infrared (SWIR) and near-infrared (NIR), as well as different standoffs, are involved in the experiments. Results show that, in all cases, our proposed approach for quality balancing yields improved recognition performance, which is especially effective when involving SWIR images at a longer standoff. Our approach outperforms another easy and straightforward downgrading approach. The cascaded face enhancement structure is also shown to be beneficial and necessary. Finally, inspired by the singular value decomposition (SVD) theory, the proposed deblurring model of SVDFace is succinct, efficient and interpretable in structure. It is proven to be advantageous over traditional deblurring algorithms as well as state-of-the-art deep-learning-based deblurring algorithms.

Funder

National Natural Science Foundation of China

The Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HyperFace: A Deep Fusion Model for Hyperspectral Face Recognition;Sensors;2024-04-27

2. Infrared-Based Gender Recognition from Facial Images: A Comparative Study Using Deep Learning;2023 2nd International Conference on Optical Imaging and Measurement (ICOIM);2023-10-20

3. GMLM-CNN: A Hybrid Solution to SWIR-VIS Face Verification with Limited Imagery;Sensors;2022-12-05

4. Deep independent component network for thermal-to-visible face recognition;Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications IV;2022-06-06

5. A successive approach to enhancement of infrared facial images;Infrared Technology and Applications XLVIII;2022-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3