Abstract
The design of Wireless Sensor Networks (WSN) requires the fulfillment of several design requirements. The most important one is optimizing the battery’s lifetime, which is tightly coupled to the sensor lifetime. End-users usually avoid replacing sensors’ batteries, especially in massive deployment scenarios like smart agriculture and smart buildings. To optimize battery lifetime, wireless sensor designers need to delineate and optimize active components at different levels of the sensor’s layered architecture, mainly, (1) the number of data sets being generated and processed at the application layer, (2) the size and the architecture of the operating systems (OS), (3) the networking layers’ protocols, and (4) the architecture of electronic components and duty cycling techniques. This paper reviews the different relevant technologies and investigates how they optimize energy consumption at each layer of the sensor’s architecture, e.g., hardware, operating system, application, and networking layer. This paper aims to make the researcher aware of the various optimization opportunities when designing WSN nodes. To our knowledge, there is no other work in the literature that reviews energy optimization of WSN in the context of Smart Energy-Efficient Buildings (SEEB) and from the formerly four listed perspectives to help in the design and implementation of optimal WSN for SEEB.
Funder
United States Agency for International Development
Centre National de la Recherche Scientifique
Subject
Control and Optimization,Computer Networks and Communications,Instrumentation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献