Comparison of the Microbial Communities Affected by Different Environmental Factors in a Polluted River

Author:

Ouyang LiaoORCID,Liu Xinyue,Chen HuirongORCID,Yang Xuewei,Li Shaofeng,Li Shuangfei

Abstract

Understanding how bacterial communities adapt to different environmental factors provides a scientific basis for developing and utilizing microbial resources in rivers. This study investigated the changes in the microbial communities of water and mud samples from two sites of an urban river (GH: Gonghe Village and YC: Yanchuan). Analysis of the water samples showed that site GH had higher concentrations of ammonium, total nitrogen, Mn, and Ni than site YC. High-throughput sequencing was used to analyze the community composition of the samples. The results showed that the dominant phyla were Proteobacteria, Bacteroidete, Actinobacteria, and Chloroflexi. The alpha diversity of the microbial community in the mud samples was higher than in the water samples. Moreover, the relative abundance of the dominant genus varied a lot between the samples, with the highest relative abundance of Arcobacter and Vibrio found in the water samples at site GH in January and October, respectively. The correlation analysis showed that pH, TN, manganese, and fluoride were the main environmental factors that affected the composition and structure of the microbial communities. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis showed that species associated with nitrogen metabolism differed between the sampling sites. In addition, potential pathogens, such as Vibrio and Arcobacter, which may pose potential risks to the environment and human health, were found in the samples.

Funder

Scientific Research Startup Fund for Shenzhen High-Caliber Personnel of SZPT

Post-doctoral Later-stage Foundation Project of Shenzhen Polytechnic

National Key Research and Development Program of China

Shenzhen Sustainable Development Science and Technology Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3