The Depths of Cast Shadow

Author:

Cameron ,Kumar

Abstract

To improve the accuracy of analysis outputs from remotely sensed images, shadow and illumination effects need to be minimised or removed. Shadow behaviour at different spectral wavelengths needs to be understood to quantify shadow accurately. This study examined whether a normalised spectral signature of shadow is invariant to sun–object–sensor geometry and can be used to quantify shadow depth. A “FieldSpec® Pro FR” Spectroradiometer and a Canon 450D digital SLR camera were used to measure signatures of cast shadow. Our field-based experiment used an occulter to cast shadow onto a ‘Spectralon’ white plate at six incremental zenith angles and evaluated shadow behaviour within and between varying footprints. A white-balanced image of each shadow zenith was taken by the Canon 450D. The FR Spectroradiometer signatures were normalised to unit vector form and compared to longitudinal transect profiles of shadow from normalised camera images using a scattering index (SI). The normalised signatures show that shadow depth is darker and more ‘blue’ at the proximal areas and conversely that image brightness values increases towards distal areas. Since image brightness is a result of sun–object–sensor geometry, we conclude that a normalised spectral signature is invariant to geometry and can be used to quantify shadow depth.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3