Ce0.9Gd0.1O2−x for Intermediate Temperature Solid Oxide Fuel Cells: Influence of Cathode Thickness and Anode Functional Layer on Performance

Author:

Sivasankaran Visweshwar,Combemale LionelORCID,François Mélanie,Caboche GillesORCID

Abstract

The performances of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) anode-supported planar cells with a 10 cm2 active surface were studied versus the combination of cathode thickness and the presence of an Anode Functional Layer (AFL). The temperature range was 500 to 650 °C, and Gd0.1Ce0.9O2−x (GDC) was used as the electrolyte material, Ni-GDC as the anode material, and La0.6Sr0.4Co0.2Fe0.8O3−d (LSCF48) as the cathode material. The power density, conductivity, and activation energy of different samples were determined in order to investigate the influence of the cathode thickness and AFL on the performance. These results showed an improvement in the performances when the AFL was not present. The maximum power density reached 370 mW·cm−2 at 650 °C for a sample with a cathode thickness of 50 µm and an electrolyte layer that was 20 µm thick. Moreover, it was highlighted that a thinner cathode layer reduced the power density of the cell.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3