Analysis of Standby Losses and Charging Cycles in Flywheel Energy Storage Systems

Author:

Amiryar Mustafa E.ORCID,Pullen Keith R.ORCID

Abstract

Aerodynamic drag and bearing friction are the main sources of standby losses in the flywheel rotor part of a flywheel energy storage system (FESS). Although these losses are typically small in a well-designed system, the energy losses can become significant due to the continuous operation of the flywheel over time. For aerodynamic drag, commonly known as windage, there is scarcity of information available for loss estimation since most of the publications do not cover the partial vacuum conditions as required in the design of low loss energy storage flywheels. These conditions cause the flow regime to fall between continuum and molecular flow. Bearings may be of mechanical or magnetic type and in this paper the former is considered, typically hybridized with a passive magnetic thrust bearing. Mechanical bearing loss calculations have been extensively addressed in the open literature, including technical information from manufacturers but this has not previously been presented clearly and simply with reference to this application. The purpose of this paper is therefore to provide a loss assessment methodology for flywheel windage losses and bearing friction losses using the latest available information. An assessment of windage losses based on various flow regimes is presented with two different methods for calculation of windage losses in FESS under rarefied vacuum conditions discussed and compared. The findings of the research show that both methods closely correlate with each other for vacuum conditions typically required for flywheels. The effect of the air gap between the flywheel rotor and containment is also considered and justified for both calculation methods. Estimation of the bearing losses and considerations for selection of a low maintenance, soft mounted, bearing system is also discussed and analysed for a flywheel of realistic dimensions. The effect of the number of charging cycles on the relative importance of flywheel standby losses has also been investigated and the system total losses and efficiency have been calculated accordingly.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3